
C O M B U S T I O N  IN N A R R O W  C A V I T I E S  

G.  Po C h e r e p a n o v  

Solid-propellant motors  are occasional ly subject to instabili t ies that lead to explosions~ This is 
often because the propellant contains excess ively  large crack- type  cavit ies,  chiefly crea ted  during the 
manufacturing p rocess .  When the combustion front approaches the edge of such a cavity, as a result  of 
the elevated p r e s s u r e  in the combustion chamber ,  combustion rapidly envelops the entire cavity. If the 
cavity is sufficiently nar row and .long, as a resul t  of the impeded gas flow the p ressu re  in it reaches  
such values that the sys tem becomes unstable. Depending on the type of propellant,  the instability mechan- 
i sm may take two quite different physical  fo rms :  a) local volume burning at the end of the cavity; b) local 
destruction of the propellant .  A theoret ical  description of these effects is offered below*. In Sec.1 the 
problem is stated, and in Sec. 2 a local instability criterion is formulated. Then the solutions of plane 
stationary problems are considered, and a sufficient condition of stability of the system is found in analytic 
form for one very simple case (Sec. 3). 

1.  F o r m u l a t i o n  of  t h e  P r o b l e m .  

Let a burning solid at time t = 0 constitute a half-space x > 0, at the boundary x = 0 of which a com-  
bustion react ion is taking place.  Within the mater ia l  in the plane y = 0, there is a crack- l ike  cavity, the 
surface of which is also burning (see Fig.  1)~ The extension of the argument  to include the case of a body 
and a c rack  of a r b i t r a r y  shape does not present  any fundamental difficulties. We assume that all the r e -  
actants are uniformly distributed in the solid phase,  and that the react ion products are gaseous.  We ne- 
glect the thickness of the react ion zone, assuming that the combustion front coincides with the surface of 
the body as a whole. 

With a view to prac t ica l  applications, we will confine ourselves  to t imes small as compared  with the 
charac te r i s t i c  s t r e s s  relaxation time in the body and the charac te r i s t i c  conductive heating time. In this 
case the body may be assumed  elastoplast ie  and its temperature  constant.  We will consider  only the quasi-  
static deformation p rocess ,  assuming that the charac te r i s t i c  t imes of the process  are  large as compared 
with the charac te r i s t i c  time of elast ic  wave propagation.  

We write the equations of the theory of small  deformations in the elast ic region: 

the equil ibrium equations 

61j,j ~- 0 (~, / = i, 2, 3) (1.1) 

Hooke's  law for a homogeneous isotropic body 

*O. I. Leipunskii and Z. V. Kirsanova have formulated and solved a specific plane problem of this type: 
"Mechanical stabili ty of burning c racks  in a propellant ,"  Abstr .  Proc .  F i r s t  All-Union Symposium on 
Combustion and Explosion [in Russian], Moscow (1968)o As far  as can be judged f rom this short  account, 
the propellant  is assumed to be an e las to-br i t t le  mater ia l ,  and local volume burning at the end of the c rack  
is not considered.  The possibi l i ty of making these assumptions in relation to actual sys tems requires  
careful  experimental  verification {there is no mention of this in the abstract)  and, in any event, ser ious ly  
r e s t r i c t s  the region of pract ica l  applications. 
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90 -95 ,  March-Apri l ,  1970. Original ar t icle  submitted August 16, 1969. 
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Fig. 1 

the kinematic s t r a i n - d i s p l a c e m e n t  relation 

e~j ----1/3 (ui, j ,~- uj,i) (1.3) 

Here, u i, r aij are displacements ,  s t ra ins ,  and s t r e s ses ,  respect ively;  k 
and tt are Lam6 ' s  constants;  the subscr ipts  1, 2, and 3 cor respond to x, y, and z 
(Fig~ 1)o 

We will consider only plastic effects in the neighborhood of the edge of the 
cavity. We employ the approximate Dugale model, according to which the plastic 
region is concentrated in a certain narrow region on the continuation of the crack; 
the size of this region must be determined from the solution of the problem. For 
simplicity, we confine ourselves to the case of symmetry about the plane y = O o In 
this case the plastic strains are concentrated in the same plane in a certain neigh- 
borhood D of the crack contour in plan (Fig. 1), and 

v y = ~ s ,  v x , = v z y = 0  (g = 0, (x, z) ~ D) (1.4) 

Here, (r s is the yield point in tension (the actual ~ - ~  diagram is approxi-  
mated by the Prandtl  diagram).  Everywhere  in what follows the boundary condi- 
tions are removed f rom the surface of the cavity in the region D to the plane y = 0, 
in exactly the same way as, for example,  in slender wing theory.  

The Dugdale model has received sa t i s fac tory  experimental  confirmation in two cases  of prac t ica l  
impor tance:  a) thin plates; b) composite propellants  with a polymer  matrix,  when the adhesion strength is 
less than the strength of the polymer .  In the lat ter  case ,  s t r ic t ly  speaking, high-elast ic ra ther  than plastic 
s t ra ins  are  concentra ted in region D. However, it is fair ly obvious that this is unimportant  within the 
f ramework  of discontinuous solutions of the theory of small  elast ic  deformations.  We note that a composite 
rocket  propellant  usually consists  of crystal l ine par t ic les  distributed in a polymer  matrix.  

We denote the thickness of the cavity,  not known in advance, by 2h, the relative displacement of the 
opposite walls of the cavity by 2% and the thickness of the burnt layer  on one wall by h c. Obviously, all 
these quantities are cer tain unknown functions of x, z,  and t. They are related with each other by the fol- 
lowing express ion:  

h = h~ + v (1o5) 

Equations of Flow of the Gas in the Cavity. We assume that the gas flow in the cavity is locally i sen-  
tropic and i rrotat ional  and that the gas is an ideal gas.  At any point x, y, z we have a c losed sys tem of 
equations 

dp dv i d p 
d-y-~-pdivv=0,  - ~ - : - - - - - p - g r a d p ,  dt 9~ - 0  (1.6) 

Here,  p, p, and v are the p re s su re ,  density, and velocity vector  of the gas,  respect ively;  ~4 is the 
adiabatic exponent. 

If we simplify the general  equations (1.6) by taking into account the condition h << L, where L is the 
charac te r i s t i c  l inear dimension of the cavity,  we encounter  difficulties related to those that ar ise  in the 
theory  of elast ic  shells and the theory of turbulence.  Since these difficulties are  not ref lected in the lit- 
e ra tu re ,  it is worthwhile dwelling on the derivation of the basic equations of flow of the gas in the cavity.  

Two exact  methods are possible.  The f i rs t  is based on averaging operations applied to Eqs.  (1~ 
with the object of closing the sys tem of equations for the mean values of the unknown functions: 

t t 
<p> = ~ p dy. <v> = ~ v dy . . . .  

- -h  --h 
(1.7) 

and the higher-order moments. However, owing to the nonlinearity of Eqs. (1.6), this is not feasible 
(closure problem similar to that encountered in connection with turbulence). The second method is based 
on the introduction into the unknown functions of a physical small parameter (for example, h/L) and ex- 

pansion of the functions in a series in y and the small parameter~ In this case, for the successive terms 

of the expansion we obtain closed systems of equations, which in principle could be solved successively 
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in o rde r  of increas ing  index. However ,  because  the boundary conditions in boundary-value  p rob l ems  with 
different  indices a re  in te r re la ted ,  the resul t ing difficulties cannot be overcome by exact  methods (not to 
mention the difficulties of summing the asympto t ic  s e r i e s ) .  

Thus,  in closing the s y s t e m  of equations or  formulat ing the boundary conditions, it is n e c e s s a r y  to 
make ce r ta in  physica l  assumpt ions  that s impl i fy  the p rob lem (Kirchhoff theory  for  e las t ic  p la tes ,  the 
theor ies  of Tay lor  and Prandt l  in turbulence,  etc.) .  Following the above-ment ioned  s e m i e m p i r i c a I  method, 
we adopt the hypothesis  of "plane sec t ions" :  

p = p ( ~ , ~ , t ) ,  p = p ( z , z , t ) ,  ~ = v = ( z , z , t ) ,  ~z=Vz(x , z , t )  (i.8) 

Then f r o m  (1.6) for the components  v x and Vy we eas i ly  obtain the following sys t em of equations (the 
a v e r a g i n g  operat ion is applied to the continuity equation): 

09 O 0 
h -~- -~- ~-x (hPvx) -[- "~- (hp�89 = pv n 

Ovx Ov x Ovx I Op 
o t  + v~ -~-+v~  T +  T ~ - z  = o 

ovz , ov~ av~ t o p  0 (1.9) 

0 p 0 p 

Here  v n is the flow veloci ty  of the gas  along the normal  to the cavi ty  su r face .  We write the equation 
of conserva t ion  of m a s s  at the combust ion f ront  

Ohc 

where Ps is the densi ty of the solid phase~ Since Ps >>p , 

ahc ( i . i0) 
PVn ~ Ps Ot 

We also write the equation of state of an ideal gas:  

R0 T p ----- pg---~ R0 = t.99 cal /mole.deg (1.11) 

Here ,  m is the molecu la r  weight of the gas ,  T the gas  t e m p e r a t u r e ,  g the acce le ra t ion  of gravi ty  at 
a given point of space (the p r inc ipa l  local  c h a r a c t e r i s t i c  of the gravi ta t ional  field). 

We take the burning ra te  in the fo rm of a ce r t a in  empi r i ca l ly  de te rmined  re la t ion  

Ohc 
Ot = f (p) ('t + bv~ -F bVz ~) (1.12) 

where b is an e m p i r i c a l  constant  (in the absence  of e ros ion ,  b = 0), andf(p)  is a ce r ta in  function. 

The sy s t em  of 23 equations (1.1)-(1.3), (1.5), (1.9)-(1.12) with the cor responding  initial and boundary 
conditions is used to de te rmine  the 23 unknown functions.  

2 .  L o c a l  I n s t a b i l i t y  C r i t e r i o n  

Under ce r ta in  c r i t i ca l  conditions the ra te  of change of the l inear  dimensions of the cavi ty  in plan may 
be much g r e a t e r  than the ra te  of change of the cavi ty  th ickness .  This is because  of the following physica l  
f ac to rs :  a) local destruct ion of the propel lant  at the end of the cavi ty  as a r e su l t  of s t r e s s  concentrat ion;  b) 
a sharp  inc rease  in burning ra te  at the end of the cavi ty  as a r e su l t  of local dis integrat ion of the ma te r i a l  
and an inc rease  in the combust ion surface  (local volume burning).  The la t te r  fac tor  is also control led by 
the local s t ra in  concentra t ion.  

These phys ica l  local instabi l i ty  mechan i sms ,  which play different  ro l e s  in different  ma te r i a l s ,  have 
a common origin - local s t ra in  concent ra t ion .  This makes  it poss ible  to formula te  the following limiting 
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equilibrium criterion. Within the frameworkof the Dugdale model the mutual displacement of the opposite 
wails of the cavity on its contour L "is always less than or equal to 25 : 

v (x, z, t) < 6 (x, z ~ L )  (2.1) 

Here  5 is  a ce r t a in  constant  of the burning p rope l l an t .  F r o m  phys ica l  cons ide ra t ions ,  5 can depend 
only on the p rope l l an t  t e m p e r a t u r e  and gas  p r e s s u r e  at  the co r re spond ing  point of the contour L. 

In accordance  with (2.1), at  v < 5 the p r o c e s s  is  loca l ly  uns table ,  and the plan d imens ions  of the cavi ty  
do not va ry  (the growth of the cavi ty  that  takes p lace ,  in p a r t i c u l a r ,  as a r e s u l t  of s table  burning is  neglec ted ,  
which is wholly p e r m i s s i b l e  only at  suff ie ient ly  sma l l  t imes ,  when h<< L); as  soon as  v = 5 at  one point on 
the contour  L, a loca l ly  unstable  " c o m b u s t i o n - d i s i n t e g r a t i o n "  p r o c e s s  begins  in a smal l  neighborhood of 
that point.  It should be kept ' in  mind that  in ce r t a in  c a s e s  the s y s t e m  as  a whole may s t i l l  r ema in  s table  
( i .e . ,  the change in the configurat ion of the cavi ty  at points where v = 5 is  "not c a t a s t r o p h i c a l l y  rapid")~ 
This case  is  pe r f ec t l y  r e a l i s t i c .  Accord ingly ,  the question of the s t ab i l i ty  of the sy s t em as a who{e should 
be s tudied independent ly.  

If the Dugdale model is  not applicable,  i .e . ,  if the p las t i c  s t r a i n s  a re  " sp read"  over  a c e r t a i n  region ,  
i t  is  n e c e s s a r y  to use a local  c r i t e r i o n  b a s e d  on the s t r e s s  in tens i ty  coeff ic ient  of the hyperfine s t ruc tu re  
p r o p o s e d  in [1]. 

When the fine s t ruc tu re  of the end of the cavi ty  is  a meaningful  concept ,  al l  these c r i t e r i a  a re  equi -  
valent  to the Irwin condition 

Kz <: KIo (KI~ 2 = 2a~ES) (2.2) 

Here ,  K I is  the s t r e s s  in tens i ty  coeff ic ient ,  Kic is  the s t rength .  In p r a c t i c e ,  the most  c h a r a c t e r i s t i c  
sign of the format ion  of a fine s t ruc tu re  is  the appearance  of a sca le  ef fec t .  

Condition (2.1) was f i r s t  p r o p o s e d  as  a b r i t t l e  f r ac tu re  c r i t e r i o n  for c r a c k e d  bodies  by M. Ya. Leonov 
and V. V. Panasyuk  [2]; in r e c e n t  y e a r s  i t  has been widely accepted  ab road  (without r e f e r ence  to Sovie: 
au thors ) .  In connect ion with the p r e s e n t  p r o b l e m ,  the c r i t e r i o n  acqu i r e s  a new phys ica l  s igni f icance .  

In o r d e r  to de te rmine  the cons tan ts  5 and Kic,  the following e x p e r i m e n t a l  scheme is the most  con-  
venient .  A through notch, s imula t ing  a defect ,  is  f o rmed  in a thin slab of the m a t e r i a l  inves t iga ted .  The 
s lab should be thick enough for  6 and Kic not to depend on the slab th ickness .  F o r  the same r e a s on ,  the 
r ad ius  of the notch should not be too l a rge .  These a r e  p r a c t i c a l  l imi t s  pecu l i a r  to each ma te r i a l ;  as fa r  as  
composi te  p rope l l an t s  a re  concerned  they a re  not bu rdensome .  Then the notched slab is  subjec ted  to 
loading and ign i ted  in a chambe r  at  a sui table  p r e s s u r e .  The loading s c he m e s  may vary  (the s i m p l e s t  is  
c en t r a l  bending).  The p roposed  method is convenient  in that ,  if the slab is  thin enough, the p r e s s u r e  in the 
cavi ty  will  be the same as  in the c h a m b e r .  In this  ca se ,  the quanti t ies  v and K I can be computed r e l a t i v e l y  
e a s i l y  in the fo rm of ce r t a in  functions of the ex t e rna l  load and the g e o m e t r y  of the s lab together  with the 
m a t e r i a l  cons tan ts .  Having m e a s u r e d  the l imi t ing  load, i t  is e a s y  to de te rmine  6 and Kic~ 

3 .  T h e  P l a n e  S t a t i o n a r y  P r o b l e m  

We will  cons ide r  the impor t an t  case  o f  the plane s t a t i ona ry  p rob l em,  when in the gene ra l  s y s t e m  of 
equat ions p r e s e n t e d  above we can subst i tute  

a ap @ av x 
v~ = O, a~ - -  O, a---i-- = at .... .  a t  = 0 (3.1) 

In the xy plane the cavi ty  is  a cut of length l along the x axis;  the th ickness  of the cut h is  much l e s s  
than l.  On the continuation of the cut there  is  a p l a s t i c  l aye r  of z e r o  th ickness  and length d to be de te rmined .  

In the given case ,  neglect ing e r o s i o n ,  we reduce the s y s t e m  of equations of See. 1 to the following 
form:  

P = Cop*, v2 • p 
2 -f •  l p C1 

t 
d I (3.2) dz ( h p v ~ ) = p J ( p ) ,  h = h o ( x ) - ] -  / ( p )  d t - F v  

o 

"1+~ i / :  [-- '~'  q ~ ' ~  d'l: v (x) = ~1 ~ z+d Y q + d)~ -- t~ [ j~ p (~) �9 -- t 
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--li ]/'(l -~ d)2--'c~ l+dl ~-(l -}- d)2-- T'~ ] 
- } - T  % tq-~s ~ - - t  u  -d'r 

--I--d l 
@l 14-d --l 

p(T) Z + d + ~  V~d~__ ~ . t + d + . r  ' / ~ d ' ~ - - z ~  
--l--d 

(3.2) 
Co == Po9o '~, ul - 3 --  t ~ ~ pl 771 Pi) + ~ _ ~  p,1 

oo 
H e r e ,  # and v a r e  the s h e a r  modu lus  and P o i s s o n ' s  r a t i o ,  r e s p e c t i v e l y ;  Cry i s  the work ing  s t r e s s  ~y 

r e m o t e  f r o m  the cav i ty ;  P0, P0 and p~, P l  a r e  the p r e s s u r e  and d e n s i t y  of  the g a s  in the c o m b u s t i o n  c h a m b e r  
a t  x = 0 and a t  the end  of the c a v i t y  a t  x = l ,  r e s p e c t i v e l y  (obv ious ly  the quan t i t i e s  with a s u b s c r i p t  1 a r e  
s u b j e c t  to d e t e r m i n a t i o n ) ;  h0(x ) i s  the g iven  t h i c k n e s s  of the  i n i t i a l  c a v i t y .  The l a s t  two of E q s .  (3.2) a r e  
the r e s u l t  of so lv ing  the p l ane  p r o b l e m  of the t h e o r y  of e l a s t i c i t y  fo r  a cu t  y = 0, I x I < l + d in an inf in i te  
p l ane  with b o u n d a r y  c o n d i t i o n s  

x 4- ig--> 0% ~v--~ %% ~'~v-->O, ~x--->O 

y = 0 ,  Z < l z l < Z + d ,  v , = v , ,  %u = 0  (3.3) 

g = 0 ,  ] x l < l  % = - - p ,  T,u-=0 

In o r d e r  to take into accoun t  the b o u n d a r y  cond i t ion  a t  the p r i n c i p a l  c o m b u s t i o n  f ron t  a t  x = 0, we 
i n t r o d u c e  the c o r r e c t i o n  ~7, e q u a l  to a p p r o x i m a t e l y  1.2. 

S y s t e m  (3.2) i s  u s e d  to f ind the fo l lowing  quan t i t i e s :  d, p(x),  p(x),Vx(X), v(x), h(x). It i s  e a s y  to r e -  
duce i t  to a s ing le  i n t e g r o - d i f f e r e n t i a l  equa t ion  in p(x) [and the l a s t  of E q s .  (3.2) to a f in i te  r e l a t i o n  fo r  d]. 
F o r  a n u m e r i c a l  so lu t ion  of th is  equa t ion  (and only  th i s  i s  p o s s i b l e  in the g e n e r a l c a s e ) ,  i t  i s  m o s t  r a t i o n a l  
to  e m p l o y  the  fo l lowing  me thod :  the  func t ion  p(x) i s  found in the f o r m  of a p o l y n o m i a l  wi th  unknown c o e f -  
f i c i e n t s  (for e x a m p l e ,  in  the f o r m  of a l i n e a r  funct ion) ,  and the equa t ion  i s  s a t i s f i e d  a p p r o x i m a t e l y  in  the 
s e n s e  of b r i n g i n g  the r m s  e r r o r  a s  c l o s e  a s  p o s s i b l e  to z e r o .  Then the unknown c o e f f i e i e n t s  a r e  d e t e r -  
m i n e d  f r o m  the cond i t i on  of m i n i m i z a t i o n  of the fune t ion  ob t a ined .  It i s  a l s o  p o s s i b l e  to use  G a l e r k i n ' s  
m e t h o d .  

F o r  the p u r p o s e  of an e s t i m a t e ,  we wi l l  make  an a p p r o x i m a t e  a n a l y t i c  c a l c u l a t i o n  on the a s s u m p t i o n  
tha t  

h 0 (x) = h 0 = const, ho ~ v, h0 ~ hl 

~ t (3.4) 
/ (p) -~ a + bp, ~ p (x)  dx ---- - y  l (Pl + po) 

0 

w h e r e  a and  b a r e  e m p i r i c a l  c o n s t a n t s .  In c a l c u l a t i n g  the d i s p l a c e m e n t  v a t  the end  of the c a v i t y  at  x = l 
and  the value  of d, for  s i m p l i c i t y ,  we a l s o  a s s u m e  tha t  a c o n s t a n t  p r e s s u r e  1 /2  {p i + P0) a c t s  on the wa l l s  
of the c a v i t y .  

Hence ,  f r o m  Eqs .  (3.2) we obta in  

pl" po" ' ~ ~ (3.5) 
P" (a ~, bpi), v~l • p~ V:~o • po 

Vxl~----7" 2 -}- • pi - ~  -~ •  po 

2 (i - -  v 2) 1 (23~ + Pi + Po) In cos v = --~1 a---""-E-- 

d ( a (2z~ q- pi-}- To) ) (3.6) 

E q u a t i o n s  (3.5) a r e  u s e d  to d e t e r m i n e  Plm P J, Vx 1, Vx0. Using (2.1) and  (3.6), we can  f ind a su f f i c i en t  
cond i t ion  of s t a b i l i t y  of the s y s t e m :  

~E ~ (3.7) - -  ~ll (2~s q- pi  + po) In cos ~ ~ 2 (1 --  v 2) 
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H e r e ,  P l  i s  the r o o t  of the equa t ion  

p 2,,21u ( a  -}- bpi ~ uP 11• 
s ~"0 - -- ~PO �9 0 ~(X-1)/X 
2po ~ \ ,0~,, ] � 9  - ( ~ - l )  po 

Ps~Z2 ( 2 a  q-  bpl q- bpo) ~ 
+ LSho~p~'---- g (3.s) 



lo 
2. 

The s imple  solution (3.5)-(3~ obtained can be used as the z e r o - o r d e r  approximation~ 
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